Groups with a supersoluble triple factorization
نویسندگان
چکیده
منابع مشابه
Triple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملSupersoluble Groups
We shall term a group G supersoluble if every homomorphic image H9*l of G contains a cyclic normal subgroup different from 1. Supersoluble groups with maximum condition, in particular finite supersoluble groups, have been investigated by various authors: Hirsch, Ore, Zappa and more recently Huppert and Wielandt. In the present note we want to establish the close connection between supersoluble ...
متن کاملA Class of Generalized Supersoluble Groups
This paper is devoted to the study of groups G in the universe cL̄ of all radical locally finite groups with min-p for all primes p such that every δ-chief factor of G is either a cyclic group of prime order or a quasicyclic group. We show that within the universe cL̄ this class of groups behaves very much as the class of finite supersoluble groups.
متن کاملtriple factorization of non-abelian groups by two maximal subgroups
the triple factorization of a group $g$ has been studied recently showing that $g=aba$ for some proper subgroups $a$ and $b$ of $g$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. in this paper we study two infinite classes of non-abelian finite groups $d_{2n}$ and $psl(2,2^{n})$...
متن کاملLanguages Recognized by Finite Supersoluble Groups
In this paper, we give two descriptions of the languages recognized by finite supersoluble groups. We first show that such a language belongs to the Boolean algebra generated by the modular products of elementary commutative languages. An elementary commutative language is defined by a condition specifying the number of occurrences of each letter in its words, modulo some fixed integer. Our sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1988
ISSN: 0021-8693
DOI: 10.1016/0021-8693(88)90245-1